Page Content
Publications
Citation key | Mroginski2007 |
---|---|
Author | Mroginski, M. A. and Murgida, D. H. and Hildebrandt, P. |
Pages | 258–266 |
Year | 2007 |
Journal | Accounts Of Chemical Research |
Volume | 40 |
Number | 4 |
Abstract | Phytochromes are sensory photoreceptors that, upon light irradiation, can be transformed between an inactive and an active state. The conversion is initiated by the photoisomerization of the cofactor, a linear methine-bridged tetrapyrrole, followed by conformational relaxations of the chromophore and the protein matrix that finally leads to the formation of the signaling state. To elucidate the underlying molecular processes, resonance Raman spectroscopy combined with quantum chemical calculations constitutes a powerful approach since it allows determination of the chromophore structure in the various states of phytochrome. On the basis of these studies, a molecular model for the photoinduced reaction cycle is derived. Phytochromes are sensory photoreceptors that, upon light irradiation, can be transformed between an inactive and an active state. The conversion is initiated by the photoisomerization of the cofactor, a linear methine-bridged tetrapyrrole, followed by conformational relaxations of the chromophore and the protein matrix that finally leads to the formation of the signaling state. To elucidate the underlying molecular processes, resonance Raman spectroscopy combined with quantum chemical calculations constitutes a powerful approach since it allows determination of the chromophore structure in the various states of phytochrome. On the basis of these studies, a molecular model for the photoinduced reaction cycle is derived. |
Zusatzinformationen / Extras
Quick Access:
Schnellnavigation zur Seite über Nummerneingabe
Auxiliary Functions
This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.